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Abstract. The phase behaviour of a fluid confined between two plane-parallel solid substrates
is investigated within the framework of lattice-gas calculations where the mean-field intrinsic
free energy is employed. By minimizing the grand potential numerically, phase diagrams are
constructed. Substrates are composed of alternating strips of weakly and strongly adsorbing
material. The lattice gas may consist of a high-density region stabilized by the strongly adsorbing
portion of the substrate while a low-density region exists over the weakly adsorbing ones (the
‘bridge’ phase). The ‘bridge’ phases coexist with either a liquidlike or a gaslike phase occupying
the entire space between the substrates. All three phases join at a triple point, and two critical points
exist at which the ‘bridge’ and gaslike phases or ‘bridge’ and liquidlike phases become (separately)
indistinguishable. By misaligning the substrates in the x-direction, the lattice gas can be exposed
to a shear strain which causes the width of the one-phase region for the ‘bridge’ phases to vary and
the triple-point location to alter.

1. Introduction

If fluids are confined to spaces of mesoscopic dimensions, their phase behaviour is altered
markedly. One of the most prominent features in this regard concerns the location of the
critical point which is shifted to increasingly lower temperatures as the degree of confinement
increases. This effect has been predicted theoretically [1] and verified experimentally [2]. At
the mean-field level of description a perturbational treatment of the free energy of a confined
fluid has recently shown that the confinement-induced reduction of the net attraction between
fluid molecules is the cause of the depression of the critical temperature with respect to its bulk
value [3].

However, most previous studies of confined fluids are concerned with substrates composed
of a single chemical species. Röcken and Tarazona [4] were the first to demonstrate the
complexity of phases coexisting in fluids confined between chemically corrugated substrates
by employing a mean-field lattice-gas model similar to the one used below. One of the main
results of their work was revealing the existence of new phases caused by the corrugation of the
substrate. In a later study they extended their original study, utilizing a more realistic density
functional approach [5]. The impact of confinement by chemically corrugated substrates on
the phase behaviour, materials properties, and microscopic structure of a ‘simple’ fluid has
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been investigated by Schoen and Diestler [6,7]. In [6,7] the substrate consisted of alternating
strips of weakly and strongly adsorbing solid. By varying the widths of these strips the
degree of chemical corrugation can be altered, which has a distinct influence on the phase
behaviour of a confined fluid film as was recently demonstrated by Bock and Schoen on the
basis of grand-canonical-ensemble Monte Carlo simulations and parallel mean-field lattice-gas
calculations [8].

Because of the chemical corrugation, the substrate model used in [6–8] offers the poss-
ibility to expose a confined film to a shear strain by misaligning the substrates in the x-
direction orthogonal to the boundary separating weakly and strongly adsorbing strips. Here
we demonstrate that imposing such a shear strain has important consequences for the phase
behaviour of a confined fluid. We employ a mean-field lattice-gas model similar to the one
in [8]. The lattice-gas model is introduced in section 2. Its usefulness is illustrated by
comparison with recent computer simulation results (see section 3) and we also discuss the
impact of shear on the phase behaviour of a confined fluid.

2. The lattice gas

The grand potential � is a key quantity in the context of transitions between various phases.
In an inhomogeneous confined fluid, �[ρ(�r)] is a functional of the local density ρ(�r). A pair
of coexisting phases is characterized by ρ1(�r) and ρ2(�r) minimizing � such that for a given
temperature T and chemical potential µ, �[ρ1(�r)] = �[ρ2(�r)]. To determine ρ1(�r) and ρ2(�r)
we discretize � by employing a lattice-gas model. For such a lattice gas one may write

�[ρ(�r)] = F[ρ(�r)] +
∑

�r
(	(�r) − µ)ρ(�r) (1)

where F[ρ(�r)] is the intrinsic free energy (functional), 	(�r) is the fluid–substrate potential,
and �r is a site on a simple cubic lattice of nx ×ny ×nz nodes. Periodic boundary conditions are
utilized in the x- and y-directions. If one is mainly interested in first-order phase transitions [4]
one may employ a mean-field ansatz for the intrinsic free energy:

F[ρ(�r)] =
∑

�r

[
kBT {ρ(�r) ln ρ(�r) + [1 − ρ(�r)] ln[1 − ρ(�r)]} − εff

2

∑
�r ′

ρ(�r)ρ(�r ′)
]
. (2)

In (2), εff determines the strength of the fluid–fluid interaction and the sum over �r ′ extends
over (the six) nearest-neighbour lattice sites of site �r . �[ρ(�r)] is minimized numerically by
the Jacobi–Newton method [9].

We realize various confinement scenarios through different choices for the fluid–substrate
potential. In the most general case the lattice gas is confined by two parallel substrates in the
x–y plane represented by 	(�r) (see below). The substrate is composed of different chemical
species located in the ranges 1 � x � ns and ns < x � nx whose interaction with the
lattice gas is strongly (coupling constant εfs) or weakly (coupling constant εfw) attractive,
respectively. The substrates are misaligned in the x-direction; this is effected by shifting the
strongly attractive portion of the upper substrate by �nx lattice sites in the +x-direction. Thus,
it is convenient to introduce a parameter α := �nx/nx to specify the misalignment of the
substrates quantitatively. It is defined such that: α = 0 if the substrates are ‘in registry’,
i.e. strongly and weakly attractive portions of the two substrates are exactly opposite each
other; α = 1

2 if the misalignment is maximum. Because of the discrete nature of the lattice,
only discrete values of α can, however, be realized. Thus, α is a measure of shear strain
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imposed on the confined lattice gas and

	(�r) ≡ 	up(x, z) =




∞ z > nz{
−εfs x − αnx � ns

−εfw x − αnx > ns
z = nz

0 z < nz

(3)

specifies the interaction of the lattice gas with the upper substrate. Likewise

	(�r) ≡ 	lo(x, z) =




∞ z < 1{
−εfs x � ns

−εfw x > ns
z = 1

0 z > 1

(4)

represents the interaction with the lower substrate.

3. Results

In the bulk, 	(�r) ≡ 0 and therefore ρ(�r) = ρ. Thus, minima of � are distributed in the µ–T

plane according to

µ = kBT ln

(
ρ

1 − ρ

)
− 6εffρ (5)

from which the bulk phase diagram can easily be determined analytically. A straightforward
calculation yields µcb = −3, Tcb = 3

2 , and ρcb = 1
2 at the bulk critical point [10]. Here and

throughout the remainder of this paper, we employ dimensionless units—that is, energies are
given in units of εff , temperatures in units of εff/kB , and lengths in units of the lattice constant
�. In the T –ρ projection the coexistence curve is symmetric with respect to the critical point
and the critical exponent β = 1

2 as expected for a mean-field theory.
More subtle effects are observed if the lattice gas is confined by solid substrates, as plots in

figure 1 show. For sufficiently large nz, chemical corrugation of the substrate does not matter
but confinement effects are already present. For example, for nz = 13 the critical point is
shifted to lower T and lower µ compared with the bulk and the coexistence curve µ(T ) is not
parallel with the temperature axis. Thus, in the T –ρ projection the coexistence curve is shifted
to lower T and higher ρ (compared with the bulk) in accord with experimental observations
(see figure 7 in [11]). From a theoretical perspective, µ(T ) can be viewed as a line of first-order
phase transitions terminating at the critical point.

If nz decreases, a bifurcation appears at some Ttr . Below T = Ttr only (inhomogeneous)
liquidlike and gaslike phases coexist. At T = Ttr the latter two coexist with a ‘bridge’ phase
characterized by a lower density over the weakly attractive portion and a higher density over the
strongly attractive portion of the substrate (see (3), for α = 0). Above T = Ttr the coexistence
curve consists of two branches. The upper one can be interpreted as a line of first-order phase
transitions involving liquidlike phases and ‘bridge’ phases whereas the lower one corresponds
to ‘bridge’ phases and gaslike phases, respectively. Both branches terminate at their respective
critical points {µlb

cp, T
lb

cp } and {µbg
cp, T

bg
cp }.

Comparing in figure 1 coexistence curves for nz = 8 and 7, it is evident that the triple point
shifts further to lower Ttr the more severe the confinement is. At the same time, µlb

cp increases

whereas µ
bg
cp decreases, such that the one-phase region for the ‘bridge’ phases widens. Because

of these rather complex variations of µ(T ) with nz, it is conceivable that an initially gaslike
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Figure 1. The chemical potential µ as a function of temperature T for lattice gases confined by
chemically corrugated substrates (nx = 14, ns = 8, α = 0). Substrate separations nz are indicated
in the figure. Along solid lines, two or three phases coexist. Coexistence lines terminate at critical
point(s).

thermodynamic state undergoes a phase transition to a liquidlike phase at some T < Ttr(nz)

and eventually to a ‘bridge’ phase at T > Ttr(nz) upon lowering nz.
This scenario has recently been observed in grand-canonical-ensemble Monte Carlo

simulations of a closely related but more realistic model with continuous fluid–fluid and fluid–
substrate interactions, namely a Lennard-Jones fluid confined between substrates chemically
corrugated on mesoscopic length scales (see figure 2) [8]. Consequently, the substrate
separation may also vary continuously, which we emphasize by expressing it in terms of
the (continuous) variable sz rather than the (discrete) variable nz employed in conjunction
with the lattice-gas calculations. A plot of the average pore density ρ̄ as a function of sz in
figure 2 exhibits two discontinuities, where the one at sz � 8.2 (in units of the ‘diameter’
of a Lennard-Jones molecule) corresponds to a gas–liquid transition and the one at sz � 7.5
corresponds to a transition from a liquid to a ‘bridge’ phase (upon reducing sz). Oscillations
in ρ̄ for small sz reflect stratification of the confined fluid [12]. Depending on the degree of
substrate corrugation, the first-order phase transition involving liquidlike and ‘bridge’ phases
may be replaced by a continuous transition without altering the thermodynamic state of the
fluid [8].

The close correspondence between computer simulation results and those obtained
for the present lattice-gas model analysed in depth in [8] clearly shows that the latter is
sufficiently realistic for use in investigating the interplay between molecular interactions and
mesoscopic length scales and its consequences for the phase behaviour of confined fluids at
little computational expense. To further elucidate the interplay between these different length
scales it seems interesting to expose the lattice gas to a nonvanishing shear strain by varying
α (see (3)). The coexistence curves µ(T ) plotted in figure 3 show that increasing α from its
initial value of zero causes the triple point to shift to higher T and µ. At the same time the
one-phase region of the ‘bridge’ phases shrinks until it eventually vanishes for a sufficiently
high shear strain.
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Figure 2. The average pore density ρ̄ as a function of substrate separation sz (see the text for
the difference in notation, i.e. nz ↔ sz). Grand-canonical-ensemble Monte Carlo results were
obtained for µ = −11.5, T = 1.0 corresponding to a Lennard-Jones bulk gas.
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Figure 3. As figure 1, but for various shear strains α indicated in the figure (nx = 14, ns = 6,
nz = 7).

One notices from figure 3 that, unlike the degree of confinement (i.e., nz), a variation of
α does not alter the position of µ(T ) relative to the T -axis for T � Ttr(α). It is furthermore
interesting to realize that the critical temperatures T lb

cp and T
bg

cp depend only negligibly on

the shear strain, unlike µlb
cp and µ

bg
cp , such that the critical points are shifted upwards and

downwards, respectively, as α increases. Consider state point B in figure 3. In the unsheared
lattice gas it corresponds to a ‘bridge’ phase. As α → 1

2 the thermodynamic state B will
eventually coincide with the ‘bridge’–gas branch of µ(T ) for T > Ttr . Thus, one expects a
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shear-induced first-order phase transition from a ‘bridge’ to a gaslike confined lattice gas. If
thermodynamic conditions are such that state point B is located above the solid line in figure 3,
the shear-induced first-order transition may involve liquidlike and ‘bridge’ phases instead. It
is furthermore conceivable that the transition occurs at T = Ttr , i.e. at the triple point.

4. Discussion and conclusions

In this paper we investigate the phase behaviour of fluids confined to spaces of mesoscopic
dimensions by complex-structured solid substrates. We employ a lattice gas whose intrinsic
free energy is treated at the mean-field level. Comparison between lattice-gas results and recent
Monte Carlo simulations for a related but more realistic model fluid indicate that a mean-
field lattice gas is sufficiently realistic for use in investigating first-order phase transitions in
confined fluids.

If the substrate material is chemically structured on mesoscopic length scales, it is possible
to expose the confined phase to a nonvanishing shear strain by misaligning the two substrates
along the x-axis. It was shown that the shear strain has profound consequences for the phase
behaviour of the confined fluid related to shifts of the location of triple and critical points as
functions of α, thus causing the width of the one-phase regime for the ‘bridge’ phases to vary
accordingly.

As one would expect intuitively, only a ‘bridge’ phase can exhibit ‘resistance’ against shear
deformation. Quantitatively, this resistance can be cast in terms of the dependence of � on α.
For example, for state points A and C in figure 3, which are both located sufficiently deep in the
one-phase regime of gaslike and liquidlike phases, respectively, � is essentially independent
of α. For a ‘bridge’ phase, on the other hand, � increases substantially with α, indicating
that the stability of this phase decreases as it is progressively sheared. For continuous models
one can identify the derivative (∂�/∂α) with the shear stress, which can be calculated from
molecular expressions in computer simulations [13]. A systematic study of the shear stress
in a continuous model closely parallel to the lattice-gas calculations of this work is currently
under way.
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